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a b s t r a c t

In this paper, we perform linear stability analysis of high- and low-dimensional models for describing
mixing-limited pattern formation in fast, homogeneous autocatalytic reactions occurring in isothermal
tubular reactors. We consider three different models of varying dimensionality—the 3D convection-
diffusion-reaction (CDR) model is the high dimensional one, and the Liapunov–Schmidt reduction based
spatially averaged two-dimensional CDR model and its regularized form are the two low-dimensional
ones. For each of these three models, steady state bifurcation diagrams that show the presence of multiple
steady states were obtained and the stability of these multiple steady states to transverse perturba-
patial averaging
iapunov–Schmidt (L–S) technique
omogeneous reaction
utocatalytic reaction

tions was analyzed using linear stability analysis. Parametric analysis of the steady state bifurcation
diagrams shows that for sufficiently large values of transverse Péclet number p, mixing-limited patterns
may emerge from the unstable middle branch that connects the ignition and extinction points of an S-
shaped bifurcation curve. Comparison of the bifurcation diagrams and the stability boundaries of the
two low-dimensional models with that of the 3D CDR model reveals that the regularized form of the
low-dimensional model has higher accuracy and a larger region of validity than the averaged form and is
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. Introduction

It is well known that strong coupling between transport and
eaction rate processes in chemical reactors gives rise to a vari-
ty of spatio-temporal patterns resulting from multiple steady
tates. Spatial pattern formation was first studied by Turing [1]
n 1952. Later Nicolis and Prigogine [2] suggested a mechanism
f symmetry-breaking and pattern formation in non-equilibrium
ystems, with Prigogine and coworkers developing the Brussela-
or model [3–5] that exhibits Turing instability. Transport-limited
atterns are generated in autocatalytic reaction systems when a
patially uniform steady state loses its stability to transverse per-
urbations, and the patterns, once formed, are sustained when local

ixing/diffusion is slower as compared to reaction. Localized hot
one formation is one such example where an asymmetrical tem-
erature profile exists in the reactor cross-section.
Temperature patterns were observed in packed bed reactors
uring partial oxidation of isobutyl alcohol by Boreskov et al. [6]
nd Matros [7], in trickle bed reactors by Barkelew and Gambhir [8],
nd in radial flow and packed bed reactors by Luss and coworkers
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9,10]. Such a condition can often decrease the yield of the desired
roduct, deactivate the catalyst, initiate highly exothermic unde-
irable reactions or induce safety hazards by decreasing the reactor
trength.

Most modeling attempts in the literature aimed at predicting
attern formation have been focused on heterogeneous packed
ed and catalytic reactors. Early theoretical studies by Luss et
l. [11] investigated the existence of asymmetric steady states in
atalytic slabs using one-dimensional diffusion-reaction models.
chmitz and Tsotsis [12] showed in their theoretical study that
nter-particle interactions give rise to spatially patterned states
nder certain conditions. Balakotaiah and coworkers [13–15] have
hown that flow misdistributions and hot spots may occur in
own-flow packed-bed reactors and the regions of these insta-
ilities are determined in terms of various transport and kinetic
arameters. Benneker et al. [16] indicated that hydrodynamic insta-
ilities observed in packed-bed reactors may disturb the plug-flow
haracter and may lead to hot spots and deactivated catalysts. Bal-
kotaiah and coworkers predicted transverse pattern formation
n adiabatic packed bed reactors in which a bimolecular reaction

with Langmuir–Hinshelwood kinetics) occurs [17], and in catalytic

onolith reactors in which an exothermic surface reaction occurs
18]. Sheintuch and Nekhamkina [19] analyzed the pattern forma-
ion in homogeneous model of a fixed catalytic bed for reactions
ith oscillatory kinetics. Viswanathan and Luss [20–22] have stud-

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:Dr.S.Chakraborty@gmail.com
dx.doi.org/10.1016/j.cej.2008.08.025
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Nomenclature

a radius of the tubular reactor
ai coefficients of terms in the expansion of polynomial

P
aij terms of matrix A
A matrix of coefficients for the system of equations

after discretization
bi coefficients of terms in the expansion of polynomial

Q
B vector of coefficients for the system of equations

after discretization
c dimensionless reactant concentration
c0 initial dimensionless reactant concentration
c̄ axially averaged dimensionless reactant concentra-

tion
ce dimensionless exit concentration
css steady state dimensionless concentration
cv dimensionless perturbation concentration term
ci coefficients of terms in the expansion of polynomial

R
C reactant concentration
Cin inlet concentration
C0 initial concentration in the reactor
Da Damköhler number
Dc Fréchet derivative
Dm molecular diffusivity
DA(B) diffusivity of species A(B)
f eigenfunction in axial direction
F non-linear operator
Jm Bessel function of the first kind
k reaction rate constant
kmn wave number
L length of the tubular reactor
Le effective reactor length
m azimuthal mode numbers
n radial mode numbers
N number of points used in discretization plus one
p transverse Péclet number
Pe axial Péclet number
r dimensionless reaction rate
RA(B) rate of disappearance of A(B)
t dimensionless time
t′ time
td characteristic radial diffusion time
tZ characteristic axial diffusion time
tR characteristic reaction time
u velocity field
ux dimensionless axial velocity
u′
x axial velocity
ū′
x averaged axial velocity

W transverse slave modes
x axial coordinate
XA(B) conversion of species A(B)
z dimensionless axial time

Greek letters
˛ coefficients of the neutral stability relation for 3D

model
ˇ parameter defined as ratio of Damkohler number to

axial Péclet number
� coefficient of terms in the expansion of c̄ − ce

� parameter in power series expansion of polynomials
P, Q, R

� azimuthal coordinate
� coefficient of time in the exponential term
� inlet feeding ratio of B to A
�0 eigenvalue corresponding to the master mode
� dimensionless radial coordinate
�′ radial coordinate
�C characteristic convection time
 eigenfunction corresponding to the master mode
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L linear operator

ed the conditions for the existence of hot zones in a uniformly
ctive shallow as well as long adiabatic packed bed reactors using
two-phase model.

Mathematical models developed to study chemical reactors
re derived from balances of species, energy, momentum and
ontinuity in conjunction with various constitutive relationships,
nd they form a set of unsteady state three-dimensional partial
ifferential equations containing a large set of physiochemical
arameters. The detailed model is rendered even more complex
ue to the non-linear dependence of kinetic and transport coef-
cients on the state variables. The bottom-up approach of using
omputational fluid dynamics (CFD) to explore the solutions of
he three-dimensional convection-diffusion-reaction (CDR) equa-
ion in the multi-dimensional parameter space is numerically very
xpensive, and is fairly impractical even with present day com-
utational technology, especially when incorporating the model
o existing control strategies. Even in cases where exact numer-
cal solutions are possible, further averaging or coarse-graining is
equired to obtain results suitable for engineering purposes. On the
ther hand, the top-down approach – which is to make a priori over-
implifying assumptions on the length and time scales of reaction,
onvection and diffusion and then apply conservation equations
nly at the macroscopic levels – though easy to solve, are incapable
f capturing the complex spatio-temporal reactor behaviors such as
ultiplicity, pattern/hot-zone formation, and reactor runaway that

re observed during operation. Accurate low-dimensional models
hat are numerically inexpensive yet retain all the qualitative fea-
ures of the 3D CDR model are required for the purpose of design,
ontrol and optimization of a chemical process. Such an intermedi-
te approach has been presented by Chakraborty and Balakotaiah
23–26], in which the fundamental three-dimensional CDR equa-
ion is averaged or homogenized over the smaller length (time)
cales using Liapunov–Schimdt (L–S) technique [27] of the classi-
al bifurcation theory to obtain low-dimensional models that retain
ll the parameters and therefore all the spatio-temporal features
f the full CDR equation. The reduced dimensionality of the mod-
ls substantially reduces the computational expense required, thus
aking it suitable for engineering applications.
In this paper, we consider the case of an isothermal tubular

eactor with homogeneous autocatalytic reaction kinetics. It has
een shown previously for this case [28] that patterned states are
enerated when the characteristic mixing time of the system is
arger than the reaction time. Considering the case of very fast
eactions (i.e., diffusion/local mixing time � reaction time) such
hat scale separation exists between the characteristic reaction and
ocal mixing time scales, we homogenize the three-dimensional

DR equation using the L–S technique along the short axial length
ver which the reaction is complete. The reduced model is a two-
imensional two-mode model that retains all the parameters of
he CDR equation, which is then used to analyze pattern formation
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n the reactor with autocatalytic reaction of the type A + 2B → 3B.
urther, we extend the region of validity of this axially averaged
wo-mode model by using a mathematical procedure called regu-
arization to obtain a regularized model, which is then subjected to
he same treatment. For each of these three models (the 3D CDR and
ts averaged and regularized forms), steady state bifurcation dia-
rams are obtained, which show the presence of multiple steady
tates, and the stability of these multiple solutions to transverse
erturbations is examined using linear stability analysis. Analytical
xpressions describing steady state solutions and neutral stability
onditions are obtained for the case of low-dimensional models,
hich are very difficult to obtain for the 3D model. The effects of

arious parameters on the nature and location of stability bound-
ries are also determined.

A dynamic simulation of patterned states using the averaged
nd regularized low-dimensional models for the isothermal [29]
nd the non-isothermal cases [30] show that the temporal evolu-
ion of patterned states from a homogeneous, unstable steady state
s characterized by a process of concentration-segregation followed
y a gradual decay of non-homogeneity with eventual return to a
omogeneous stable steady state at time scales much larger than
eactor residence time. Patterned states have been simulated in [29]
nd [30] by solving the non-linear unsteady state CDR equations for
he averaged and regularized models. The homogeneous unstable
teady state is perturbed using three kinds of perturbation (namely,
and, antiphase and target), and the resulting evolution of pat-
erned states is studied along with the effects of various parameters
n such an evolution.

. Mathematical modeling

.1. Three-dimensional model

We consider the case of a tubular reactor of uniform cross-
ection with length L and hydraulic radius a, in which a
omogeneous autocatalytic reaction given by

+ 2B
k−→3B, (1)

ccurs. The rates of disappearance of A and B are given by

A = −RB = kCAC2
B . (2)

The scalar concentration C(x, �′, �, t′) of any species obeys the
DR equation given by

∂C

∂t
+ u · ∇C = ∇ · (Dm∇C) − R(C), (3)

here u(x, �′, �, t′) is the velocity field, Dm is the molecular diffu-
ivity, and R(C) is the volumetric sink term due to homogeneous
hemical reaction, with flux-type (Robin) boundary condition at
he entrance and no-flux type (Neumann) boundary condition on
ll other surfaces. The symbols x, �′, � and t′ represent the three spa-
ial coordinates (axial, radial and azimuthal) and time, respectively.

hen the velocity profile is unidirectional (in axial direction), Eq.
3) is simplified for species A and B, respectively, to

∂Ci
∂t′

+ u′
x
∂Ci
∂x

= Di
∂2Ci
∂x2

+ Di
[

1
�′
∂

∂�′

(
�′ ∂Ci
∂�′

)
+ 1

�′2
∂2Ci
∂�2

]
−Ri, (i = A,B), (4)
here Ri (for i = A, B) is given by Eq. (2). The boundary conditions
for i = A, B) are given by

t x = 0, Di
∂Ci
∂x

= u′
x(Ci − Ci,in), (5)

a

a

eering Journal 145 (2009) 399–411 401

t x = L, ∂Ci
∂x

= 0, (6)

t �′ = 0, Ci is finite, (7)

t �′ = a, ∂Ci
∂�′ = 0, (8)

i(x, �
′, �, t′) = Ci(x, �′, � + 2
, t′), (9)

nd the initial condition (for i = A, B) is given by

t t′ = 0, Ci(x, �
′, �,0) = Ci0(x, �′, �). (10)

Taking L and a as characteristic length scales in axial and radial
irections, respectively, CR as the reference concentration and ū′

x

s the average velocity, we obtain four time scales in the system,
ssociated with convection (�C), radial diffusion (td), axial diffusion
tZ) and reaction (tR), which are given as

C = L

ū′
x
, td = a2

Dm
, tz = L2

Dm
, tR = CR

R(CR)
, (11)

espectively. Using these time scales we obtain three independent
imensionless numbers: transverse Péclet number (p), axial Péclet
umber (Pe), and Damköhler number (Da), which are given as

= td
�C

= a2ū′
x

LDm
, Pe = tZ

�C
= ū′

xL

Dm
, Da = �C

tR
= LR(CR)
ū′
xCR

, (12)

espectively. Another parameter can be defined as the ratio of
amköhler number to axial Péclet number, given by

= Da

Pe
= DmR(CR)

ū′
x2CR

= �2
C

tRtZ
. (13)

hus, ˇ involves all the timescales in the system, excluding the one
n the transverse direction (i.e., td), and is independent of the radial
nd axial dimensions of the reactor.

In this work, we study the formation of patterned states as a
esult of difference in transverse mixing rates and reaction rates and
ot due to difference of molecular diffusivities of different species.
herefore, diffusivities of both species A and B are taken to be equal,
.e., Dm = DA = DB.

The three-dimensional CDR equation given in Eq. (4) is made
imensionless by using the following dimensionless variables and
arameters

= C

CR
, � = �′

a
, z = x

L
, t = t

�C
, r(c) = R(C)

R(CR)
, ux = u′

x

ū′
x
.

(14)

Assuming a flat velocity profile such that ux = 1 and taking
R = CA,in, the 3D CDR equations for species A and B in the dimen-
ionless form are given by (for i = A, B),

∂ci
∂t

+ ∂ci
∂z

+ Da ri =
ˇ

Da

∂2ci
∂z2

+ 1
p

[
1
�

∂

∂�

(
�
∂ci
∂�

)
+ 1
�2

∂2ci
∂�2

]
, (15)

espectively, where, rA = −rB = cAc2
B . Similarly, the boundary con-

itions (for i = A, B) can be written in dimensionless form as

t z = 0,
ˇ

Da

∂ci
∂z

− ci +�i = 0, (16)

here �A = 1, �B = CB,in/CA,in =�,

t z = 1,
∂Ci = 0, (17)

∂z

t � = 0, ci is finite, (18)

t � = 1,
∂Ci
∂�

= 0, (19)
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ig. 1. Schematic diagram of a tubular reactor, showing the effective reactor length
Le), and the length scales in transverse (a) and axial (L) directions.

i(z, �, �, t) = ci(z, �, � + 2
, t), (20)

he initial condition (for i = A, B) are given by

t t = 0, ci(z, �, �,0) = ci0(z, �, �). (21)

.2. Liapunov–Schmidt reduction-based averaging of the 3D CDR
odel

We have considered the case of a very fast reaction such that a
eparation of time/length scales (between transverse diffusion and
eaction) exists in the system. The reaction is completed within a
mall axial length of the reactor, which is called the effective reactor
ength, Le, and is given by [28]

Le

a
∼

√
tR
ˇ1td

. (22)

Fig. 1 shows a schematic diagram of a tubular reactor with the
ffective reactor length Le. It is obvious that for the case of a fast
eaction, tR � td, as a result of which Le � a. Therefore, Le � L, since
ypically a < L. Nevertheless, neglecting the length Le would be an
versimplifying assumption resulting in loss of one parameter—the
xial Péclet number, Pe. Instead, we homogenize the CDR equation
ver the short axial length, Le, using Liapunov–Schimdt technique
23] to obtain a low-dimensional model that – unlike traditional
versimplified models developed using the top–down approach
retains all the parameters of the original CDR equation. Con-

equently, our low-dimensional models are capable of capturing
omplex spatio-temporal patterns that are often missed by the
raditional low-dimensional models [29,30]. Further, this low-
imensional model obtained after L–S averaging, unlike traditional
odels, is described by two concentration variables instead of one;

ence the name two-mode model [24].
Details of transverse averaging of a homogeneous tubular reac-

or can be found in [23]. Axial averaging of a homogeneous tubular
eactor using the same technique can be found in [28]. In this paper,
or the sake of brevity, we do not present the complete derivation
f the axially averaged model using Liapunov–Schmidt averaging,
nd instead, we summarize the main steps involved in the rigorous
veraging of the three-dimensional CDR model.

The three-dimensional CDR equation which is applicable for
oth species A and B can be written in dimensionless form (in terms
f the parameters p, Pe and Da) as

∂c

∂t
+ ux(�)∂c

∂z
+ Da r(c) = 1

Pe

∂2c

∂z2
+ 1
p

[
1
�

∂

∂�

(
�
∂c

∂�

)
+ 1
�2

∂2c

∂�2

]
.

(23)

e consider the non-linear function

∂2c
[
∂c ∂c 1

{
1 ∂

(
∂c

)

(c, Pe) ≡

∂z2
− Pe

∂t
+ ux(�)

∂z
− Da r(c) −

p � ∂�
�
∂�

+ 1
�2

∂2c

∂�2

}]
= 0, (24)

I
t
d
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ith the boundary conditions being given by

t z = 0,
1
Pe

∂c

∂z
− c +�i = 0, (25)

t z = 1,
∂c

∂z
= 0, (26)

t � = 0, c is finite, (27)

t � = 1,
∂c

∂�
= 0, (28)

(z, �, �, t) = c(z, �, � + 2
, t). (29)

or the base state, i.e. Pe = 0 (or in other words, when axial mixing
s complete down to the molecular level), the solution to Eq. (24) is
= c̄ and

v = DcF(c̄,0)v = d2v
dz2

= 0, (30)

ith dc/dz = 0 at z = 0, 1, where L is a linear operator operating on
variable v, and DcF(c̄,0) is the first-order Fréchet derivative of

he function F (defined in Eq. (24)), evaluated at c = c̄, Pe = 0. Here
im(ker L) = 1; L has a zero eigenvalue (�0 = 0) and corresponding
igenfunction is  0 = 1 ( 0 ∈ ker L) normalized with respect to the
nner product

u, v〉 =
∫ 1

0

uv dz. (31)

ere, 0 represents the leading master mode, which in this case is
mode without axial variation and W represents the slave modes
ith axial variation but zero axial average. Therefore,W ⊥ ker L, or

n other words, 〈W, 0〉 = 0, (where the inner product is defined by
q. (31)), and we can write c(z, �, �, t) as

(z, �, �, t) = 〈c, 0〉 0 +W = c̄(�, �, t) +W(z, �, �, t). (32)

is self-adjoint (i.e., L∗ = adjoint operator = L) and the projection
nto the range L is defined by EF = F − 〈F, 0〉 0, and the projection
nto the ker L∗ is defined by (I − E)F = 〈F, 0〉 0. If F = 0, then the
rojections of F onto these two orthogonal planes have to be zero,

.e.,

(c̄ +W,Pe) −
∫ 1

0

F(c̄ +W,Pe) dz = 0, (33)

1

0

F(c̄ +W,Pe) dz = 0. (34)

q. (34) is called the branching equation, which has to be solved in
onjunction with Eq. (33) in order to obtain the transverse slave
odes W(z, �, �, t). For the case of fast reactions, the perturba-

ion parameter Pe is defined in terms of effective reactor length
e (instead of the actual length L) and is obtained on the basis of
he assumption that the time scales of axial diffusion based on Le

tZ = L2
e /Dm) and reaction (tR = CR/R(CR)) are of the same order of

agnitude [28]. Thus, Pe (in Eq. (12)) is given by

e = ū′
xLe

Dm
=

√
ū′2
xCR

DmR(CR)
. (35)

s is evident, Pe is a small parameter in case of fast reactions, and,
herefore, we carry out an expansion of W in terms of Pe as

W = Pe W + Pe2W + Pe3W + h.o.t.,

r(c̄ +W) = r(c̄) + Pe W1r′(c̄) + h.o.t.

(36)

n order to obtain the low-dimensional equations by averaging over
he effective length of the reactor, we require at least two indepen-
ent modes, the difference of which quantifies the amount of axial
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ixing. In addition to the axially averaged concentration c̄, which
s the master mode and is defined as

¯(�, �, t) =
∫ 1

0

c(z, �, �, t) dz, (37)

e define another mode ce (exit concentration) as

e(�, �, t) = c(z = 1, �, �, t). (38)

sing these two modes and the expansion of W in terms of Pe (Eq.
36)), we perform the Liapunov–Schmidt reduction-based spatial
veraging of Eq. (24), with the boundary conditions given by Eqs.
25)–(29) to obtain the low-dimensional axially averaged model
escribed by a pair of coupled differential-algebraic equations,
nown as global and local equations, respectively, and are pre-
ented below.

Global equation:

p

[
∂c̄

∂t
+ ux(�)[ce − cin] + Da r(c̄)

]
= 1
�

∂

∂�

(
�
∂c̄

∂�

)
+ 1
�2

∂2c̄

∂�2
,

(39)

Local equation:

c̄ − ce = Pe

6
ux(�)[cin − ce], (40)

here the two modes c̄ and ce are given by Eqs. (37) and (38),
espectively. Here, c̄ is the axially averaged concentration in the
eactor and ce is the concentration at the reactor exit. It may be
oted that all the three parameters of the original 3D CDR equation
re retained between the global and local equations. The axial Péclet
umber (Pe) in Eq. (40) is based on the effective reactor length Le

as given by Eq. (22)). The boundary conditions for Eqs. (39) and
40) are given by

t � = 0, c̄ is finite, (41)

t � = 1,
∂c̄

∂�
= 0, (42)

¯(�, �, t) = c̄(�, � + 2
, t). (43)

he initial condition is given as

t t = 0, c̄(�, �,0) = c̄(�, �). (44)

he region of validity for this model could be obtained in terms
f the parameters by considering higher order terms (of Pe) in the
eries given in Eq. (36) and examining the radius of convergence of
he local equation, as had been done by Chakraborty and Balakota-
ah [23] for the case of transverse averaging of a tubular reactor.
he same may be done for axial averaging of a tubular reactor;
erivation of which is beyond the purview of this work. However a
etailed derivation could be found in [28]. Inspection of the axially
veraged model reveals that the model is not valid for conditions of
e ≥ 6. However, the actual radius of convergence of the local equa-
ion corresponds to a value of Pe smaller than 6. Rearranging Eq.
40), we get

e − cin = c̄ − cin
1 − (Pe/6)ux(�)

. (45)

sing Eqs. (39) and (45), Eqs. (39) and (40) could be rewritten in a

ingle equation form in terms of c̄ as[
∂c̄

∂t
+ ux(�) c̄ − cin

1 − (Pe/6)ux(�)
+ Da r(c̄)

]
= 1
�

∂

∂�

(
�
∂c̄

∂�

)
+ 1
�2

∂2c̄

∂�2
,

(46)

c

(
t
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riting Eq. (46) for i = A, B, for a flat velocity profile, we simplify the
odel equation to[
∂c̄i
∂t

+ c̄i − ci,in
1 − (Da/6ˇ)

+ Da ri(c̄)
]

= 1
�

∂

∂�

(
�
∂c̄i
∂�

)
+ 1
�2

∂c̄i
∂�2

, (47)

here, rA(c̄) = −rB(c̄) = c̄Ac̄2
B . The boundary conditions (for i = A, B)

re given by

t � = 0, c̄i is finite, (48)

t � = 1,
∂c̄i
∂�

= 0, (49)

¯ i(�, �, t) = c̄i(�, � + 2
, t), (50)

he initial conditions (for i = A, B) are given as

t t = 0, c̄i(�, �,0) = c̄i0(�, �). (51)

he parameter ˇ is given by Eq. (13). We will refer to this model
described by Eqs. (47)–(51)) as the averaged model.

.3. Regularization of axially averaged model

As mentioned in the previous section, the radius of convergence
f the local equation is given by Pe < 6. Outside the region of con-
ergence, the averaged models are quantitatively (and sometimes
ven qualitatively) inaccurate. Here, we utilize the mathematical
echnique of regularization to increase the radius of convergence of
he equation, which in turn would increase the region of validity of
he low-dimensional models.

Consider a function defined by an infinite power series in terms
f a parameter �, given by

= c0 + c1�+ c2�2 + c3�3 + · · · (52)

sually, one truncates the series retaining terms till a particular
rder; however, outside the region of convergence of the series,
nclusion of higher order terms does not make the series conver-
ent. Thus, in cases where the power series is poorly convergent or
ven non-convergent, we can use Padé’s approximation to rectify
his problem and increase the region of convergence and validity
f the series. Unlike the power series that expresses the function in
erms of a single polynomial, Padé’s approximation represents the
unction as a ratio of two polynomials

= P

Q
, (53)

here

P = a0 + a1�+ a2�2 + a3�3 + · · ·
Q = 1 + b1�+ b2�2 + b3�3 + · · · + bn�n (54)

he central idea in regularization is to make a suitable choice of
he polynomial Q so as to increase the radius of convergence of
he original power series. In most cases, Padé’s approximation pro-
ides a better approximation as compared to the original power
eries especially when |�| is comparable to (or even greater than)
he radius of convergence of the power series R [31].

In our case, the local equation obtained after Liapunov–Schmidt
eduction is such a power series in terms of the perturbation param-
ter, Pe, of the form
¯ − ce = �1Pe+ �2Pe
2 + �3Pe

3 + · · · (55)

Instead of truncating the series to O(Pe) (as in the case of Eq.
40)), we employ the regularization technique [31] discussed above
o obtain the regularized model, which is described by the following
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quation:[
∂c̄i
∂t

+ (c̄i − ci,in)
(

1+Da
6ˇ

)
+ Da ri(c̄)

]
= 1
�

∂

∂�

(
�
∂c̄i
∂�

)
+ 1
�2

∂c̄i
∂�2

,

(56)

ith the boundary and initial conditions being given by Eqs.
48)–(51). It may be observed that Eq. (56) is similar to Eq. (47),
xcept for the coefficient of the (c̄i − ci,in) term (i = A, B). Thus, for the
ake of brevity, the derivation of the steady state solution and neu-
ral stability relation has been illustrated for the averaged model
lone.

. Steady state solutions and bifurcation diagrams

In this section, we obtain the homogeneous steady state solu-
ions (cA,ss, cB,ss) to the three models obtained in Section 2. For
he 3D model, we solve Eq. (15) for cA,ss and cB,ss, which repre-
ent the steady state concentration of species A and B, respectively.
t may be noted that for uniform feeding over the reactor cross-
ection, cA,ss and cB,ss are uniform and independent of the transverse
oordinates. The same method is followed for Eqs. (47) and (56)
o determine the steady state solutions of the averaged model
nd regularized model, respectively. Owing to the reduced (axial)
imensionality of the averaged and regularized models, their
teady state solutions can be obtained by solving the cubic equa-
ions given by Eqs. (65) and (66), while that for the 3D model is
iven by a second-order ordinary differential equation.

.1. Steady state solution of the three-dimensional CDR model

The one-dimensional steady state solution is obtained by solving
he following simplified form of Eq. (15)

dci,ss

dz
+ Da ri,ss = ˇ

Da

d2ci,ss

dz2
, (57)

here i = A, B, and rA,ss = −rB,ss = cA,ssc
2
B,ss. The boundary con-

itions are given by Eqs. (16) and (17). Taking the reference
oncentration CR = CA,in, we get CA,in = 1 and CB,in =�. Adding Eqs.
57) for i = A with that for i = B, we obtain

d
dz

(cA,ss + cB,ss) = ˇ

Da

d2

dz2
(cA,ss + cB,ss). (58)

dding the boundary conditions given by Eqs. (16) and (17), we
btain

t z = 0,
ˇ

Da

∂

∂z
(cA,ss + cB,ss) − (cA,ss + cB,ss) + 1 +� = 0, (59)

t z = 1,
∂

∂z
(cA,ss + cB,ss) = 0, (60)

olving these equations for (cA,ss + cB,ss), we obtain the invariance

A,ss + cB,ss = 1 +�, (61)

ubstituting which in Eq. (57), we get
dcA,ss

dz
+ Da cA,ss(�+ 1 − cA,ss)2 = ˇ

Da

d2cA,ss

dz2
. (62)

e solve Eq. (62) for cA,ss numerically by using second order finite
ifference method with reflection type boundary conditions. Eq.
61) is then used to find cB,ss. Arc length continuation technique is
sed to plot steady state bifurcation diagrams as exit conversion of
pecies A versus Damköhler number Da.

t
A
F
r

(
a
c
f
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.2. Steady state solution of the averaged model

The steady state form of the averaged model is given by[
c̄i,ss − ci,in

1 − (Da/6ˇ)
+ Da ri,ss(c̄)

]
= 0, (63)

here, rA,ss(c̄) = −rB,ss(c̄) = c̄Ac̄2
B . Adding the above equations for

= A and that for i = B, we obtain an invariance

¯A,ss + c̄B,ss = 1 +�. (64)

ubstituting this relation in Eq. (63), we get the following relation,
hich is then used to find both CA,ss and CB,ss, for a fixed value of
arameters Da, ˇ and �

a
(

1 − Da

6ˇ

)
c̄3
B,ss − Da

(
1 − Da

6ˇ

)
(1 +�)c̄2

B,ss + c̄B,ss −� = 0.

(65)

his relation is then used to plot steady state bifurcation diagram
f the exit steady state concentration of species A or B as a function
f Da.

.3. Steady state solution of the regularized model

We solve Eq. (56) in a manner similar to the one in Section 3.2
o obtain the steady state solution of the regularized model, which
s given by

Da

(1 + Da/6ˇ)

]
c̄3
B,ss −

[
Da(1 +�)

(1 + Da/6ˇ)

]
c̄2
B,ss + c̄B,ss −� = 0. (66)

t may be noted that Eq. (66) is similar in form to Eq. (65), and the
nvariance relation given by Eq. (64) holds good for the regularized

odel. Eqs. (64) and (66) are used to plot steady state bifurcation
iagrams for the regularized model.

. Linear stability analysis

In order to examine the stability of the steady state solutions
given by Eq. (62)) of the 3D CDR model to transverse perturbations,
e write the state variables for i = A, B in the form

i = ci,ss + civ (67)

here the perturbation terms, civ is of the form

iv = e�tfi(z)Jm(�kmn)eim�, (68)

here m and n are azimuthal and radial mode numbers, respec-
ively, Jm is the Bessel function of the first kind, � is the
rowth/decay coefficient and kmn is the wave number that can be
btained by using the no flux boundary condition at � = 1, which is
he nth nontrivial solution of the equation

d
d�
Jm(kmn�)

∣∣∣
�=1

= mJm(kmn) − kmnJm+1(kmn) = 0. (69)

very value of kmn corresponds to a mode of perturbation or
igen mode, e.g., k11 = 1.8412 corresponds to the first mode (shown
n Fig. 2(a)). Regions indicated by ‘H’ represent high concentra-
ion of species i while ‘L’ represents regions of low concentration.
ll modes with m = 0 are azimuthally symmetric (as shown in
ig. 2(c)), while those with non-zero azimuthal mode number
etain azimuthal variation.
It may be noted that, for the case of the two-dimensional models
averaged and regularized) the concentration is not a function of z
nd hence the variables ci, ci,ss, civ will be replaced by their averaged
ounterparts, i.e., c̄i, c̄i,ss, c̄iv where (i = A, B). Also, fi(z) will not be a
unction of z, and will be replaced by fi where (i = 1, 2).
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Fig. 2. The first six

By linearizing the model equations using multivariate Taylor
eries expansion and substituting the perturbation terms (with
= 0 for neutral stability analysis), we obtain the neutral stabil-

ty relations for each of the three models, which are then solved
o obtain the neutral stability boundary. Detailed derivation of the
eutral stability relations for the 3D, averaged and regularized 2D
odels have been presented in Appendix A. Here we present the

eutral stability relations for each of the three models.
Neutral stability relation for the three-dimensional model is a

N − 1)th order polynomial in (k2
mn/p) given by

1

(
k2
mn

p

)N−1

+ ˛2

(
k2
mn

p

)N−2

+˛3

(
k2
mn

p

)N−3

+ · · · + ˛N−1

(
k2
mn

p

)
+ ˛N = 0, (70)

here N is the total number of points in the second-order finite
ifference discretization scheme. The neutral stability relation
btained above can now be used to find the value of transverse
éclet number p for a given value of Da, ˇ and �. Neutral stability
urves in the parameter space of p versus Da can also be plotted
sing this relation.

The neutral stability relations for the two low-dimensional mod-
ls are quadratics equation in (k2

mn/p), given by
k2
mn

p

)2

+ [2� + Da c̄B,ss(c̄B,ss − 2c̄A,ss)]

(
k2
mn

p

)

+ [�2 + Da c̄B,ss(c̄B,ss − 2c̄A,ss)�] = 0, (71)

s
i
o
T
t

erse eigen modes.

here � is given by

=

⎧⎪⎨
⎪⎩

(
1 − Da

6ˇ

)−1
for Averaged Model,(

1 + Da

6ˇ

)
for Regularized Model.

(72)

Eqs. (70)–(72) could be used to generate the neutral stability
urves for different values of �, kmn, and ˇ.

. Results

.1. Steady state bifurcation diagrams: comparison between
hree-dimensional and spatially averaged models (averaged and
egularized)

In this section, we present the steady state bifurcation diagrams
btained from both the three- and two-dimensional models for dif-
erent values of � (=CB,in/CA,in) and ˇ (=Da/Pe). Solving the model
quations given in Sections 3.1 and 3.2, we obtain bifurcation plots
ith steady state conversion of A (XA) plotted against Damköh-

er number (Da). Fig. 3 presents two such bifurcation plots that
how the effect of the parameter �. Fig. 3(a) shows that for all the
hree models, the steady state bifurcation diagram is an S-shaped
urve with three steady states over a range of Damköhler number,
hile Fig. 3(b) reveals that this region of steady state multiplic-

ty decreases as � increases, and at sufficiently high value of �,
he models have a single steady state solution over the complete
ange of Da. Larger the value of �, higher is the concentration of

pecies B in the inlet and larger is the autocatalytic effect, lead-
ng to very fast reaction and almost instantaneous consumption
f species A, resulting in a single steady state rather than three.
he reactor, therefore, jumps directly from the extinguished state
o ignited one without going through that region in the param-
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Fig. 3. Steady state bifurcation plots of exit conversion of A (XA) versus

ter space where multiple steady states exist. As is evident from
ig. 3(a) and (b), the low-dimensional models retain this qualita-
ive feature exhibited by the full 3D CDR model, and the bifurcation
lots of the averaged and regularized models almost overlap each
ther for all values of �. They diverge slightly from the bifurca-
ion plots of three-dimensional model for large values of Da but
re still quite accurate in predicting the region of steady state

ultiplicity for the complete range of �. Large Da values imply

onger reactors that make axial averaging less accurate. It has been
hown for the case of catalytic reactors [18] that non-uniform
attern states emerge from the unstable middle branch of the
ifurcation diagram. We shall illustrate with the help of linear sta-

o
t
m
a
o

Fig. 4. Steady state bifurcation plots of exit conversion of A (XA) versus Da
r all the three models, for (a) �= 0.05 and ˇ = 10, (b) �= 0.1 and ˇ = 10.

ility computations that the same also holds true for the present
ase.

Fig. 4 shows similar bifurcation plots illustrating the effect of
he parameter ˇ. A comparison of the plots in Fig. 4(a)–(d) reveals
hat the region of multiplicity increases with a decrease in ˇ. For a
iven value of Da, a decrease in ˇ indicates an increase in Pe. Thus,
n enlarged region of multiplicity corresponds to an increase in Pe

r an increase in axial mixing limitations, which along with the
ransverse mixing limitations enhance the chances of pattern for-

ation. A comparison of the curves for the three models shows that
t higher values of ˇ (between 10 and 20), the bifurcation diagrams
f the two low-dimensional models coincide and are close to that

, for all the three models, for four different values of ˇ and �= 0.02.
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f the 3D model. Decreasing ˇ causes the bifurcation plots of the
ow-dimensional models to diverge from those of the 3D model. It

ay be noted that decreasing ˇ from 20 to 10 causes the averaged
odel to diverge more (especially near the point of extinction) than

he regularized model, suggesting that the averaged model loses
ts accuracy at lower values of ˇ (or at higher values of Pe) as we
pproach the border of convergence of the local equation. Fig. 4(d)
hows bifurcation plots for the 3D and regularized models at ˇ = 5.
s is evident from the preceding discussion, the averaged model,
hich becomes increasingly inaccurate, does not yield an S-shaped

ifurcation curve at values of ˇ≤ 9. Therefore, for higher values of
, the averaged model is both quantitatively and qualitatively accu-
ate, while at lower ˇ values it loses quantitative agreement with
he 3D model and ceases to be qualitatively valid for ˇ≤ 9.

Fig. 5(a) and (b) shows the bifurcation plots for even lower values
f ˇ = 4 and ˇ = 3, respectively. Even at ˇ = 4 the regularized model
hows reasonable agreement with the 3D model; however for ˇ = 3
t starts to diverge and the divergence increases as ˇ decreases. For
≤ 2 (when �= 0.02), the regularized model becomes both quali-

atively and quantitatively inaccurate.
Thus, while the averaged model is valid forˇ > 9, the regularized

odel has a much larger region of validity given by ˇ > 2.

.2. Neutral stability curves: comparison between
hree-dimensional and spatially averaged models (averaged and

egularized)

Using the neutral stability relations obtained in Section 4, we
lot the neutral stability curves in the parameter space of transverse
éclet number, p, and Damköhler number, Da. Fig. 6(a)–(c) shows

i
i
r
t
i

plots for different values of ˇ.

he neutral stability curves of all three models for the first four
igen modes, computed at ˇ = 10 and �= 0.02, which – it turns out
are confined by two asymptotes. Fig. 6(d) compares the neutral

tability curves of the three models for the third eigen mode k01. In
his case, complete agreement between the 3D and the regularized
orm of low dimensional model is observed.

Fig. 7 shows the effect of � on the neutral stability curves.
nspection of Figs. 7 and 3(a) reveals that the two vertical asymp-
otes on either side of the neutral stability curve corresponds to
he two limit points (i.e., the ignition and extinction points) in
he corresponding steady state bifurcation diagram. Thus, the pat-
erned states may emerge from the unstable middle branch that
onnects the two limit points of the bifurcation diagram. While
ig. 7(a) shows the regularized and the 3D models coinciding,
ig. 7(b) shows that no neutral stability curve is obtained for the
hree-dimensional model for�≥ 0.1 since there is no region of mul-
iplicity for�≥ 0.1, which can also be seen from the corresponding
ifurcation plot in Fig. 3(b). However, the two-dimensional mod-
ls (both the averaged and the regularized) do predict a very small
egion of steady state multiplicity and hence we obtain neutral sta-
ility curves for them, as can be seen in Fig. 7(b). For still higher
alues of �, the low-dimensional models follow the behavior of
he 3D model in that no multiplicity is predicted by in any of the

odels.
Fig. 8 shows the effect of varying ˇ from 20 to 5, correspond-
ng to the parametric analyses of steady state bifurcation diagrams
n Fig. 4. For ˇ≥ 10, we observe the neutral stability curves of the
egularized and the 3D models coincide completely while those of
he averaged model diverge slightly from them. However, decreas-
ng ˇ causes the averaged model to diverge substantially from the
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. Discussion and conclusions

In this work, we perform bifurcation and stability analy-
is of the three models of an isothermal homogeneous tubular
eactor with autocatalytic kinetics. We start with the three-

a
t
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t
t

Fig. 7. Neutral stability curves for the three models corresponding
e first four eigen modes for the three models for the case of ˇ = 10 and �= 0.02. (d)
10 and �= 0.02.

imensional CDR equation, which is then averaged axially using
iapunov–Schmidt technique of classical bifurcation theory to
btain a two-dimensional model. The region of validity of this aver-

ged two-dimensional model is increased by regularizing it using
he mathematical technique of regularization. Steady state bifur-
ation diagrams that capture the steady state multiplicity of all
hree models are plotted and linear stability analysis is performed
o determine the stability of these steady states to transverse

to first eigen mode k11 for different values of � and ˇ = 10.
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erturbations. Analytical expressions of steady states and stability
oundaries obtained for the low-dimensional case provide consider-
ble computational ease over those given by the second order partial
ifferential equations for 3D model. Our results show that for all the
hree models, the two asymptotes of the neutral stability curve cor-
espond to the two limit points (ignition and extinction points) of
he bifurcation diagram. Thus, we may conclude that for the case
f homogeneous autocatalysis patterned states may emanate from
he unstable middle branch connecting the ignition and extinction
oints in the S-shaped bifurcation curve as in the case of catalytic
eactors [18]. Our neutral stability results indicate that the pat-
erned states may be observed more readily for low values of �
inlet feeding ratio of B to A).

Comparison of bifurcation diagrams and neutral stability curves
f the three models indicates that while the averaged model is
uantitatively correct for ˇ > 9, the regularized model is both qual-
tatively and quantitatively accurate for ˇ≥ 5 and is qualitatively
orrect up to ˇ > 2. Thus, while the regularized model is valid for
> 2, the averaged model is valid for ˇ > 9, and the former is there-

ore recommended over the latter.
A computational analysis of the temporal evolution of

ixing-limited concentration and temperature patterns has been
erformed using averaged and regularized models for the isother-

al [29] and non-isothermal [30] cases. Our analysis shows that the

atterned states indeed emerge from the middle unstable branch
f the S-shaped bifurcation curve, and the temporal evolution of
atterned states is characterized by a process of concentration-
egregation followed by a gradual decay of non-homogeneity,

w

ponding to first eigen mode k11 for different values of ˇ and �= 0.02.

hich eventually results in a homogeneous stable steady state.
he above-referred works also confirm that the time required for
he patterned states to decay into homogeneous states is strongly
ependent on the transverse and axial Péclet numbers. As may be

ntuitively expected, an increase in the values of these numbers
esults in an increased decay time of patterned states.

ppendix A. Calculation of linear stability boundary

In this section, we present the derivation of the neutral stability
elations for the three models.

.1. Calculation of neutral stability boundary for
hree-dimensional model

Using Eqs. (15), (67), (68) we linearize non-linear reaction terms
sing multivariate Taylor series expansion truncated at first-order
o get

�f1 + f ′1 = ˇ

Da
f ′′1 − k2

mn

p
f1 − Da(C2

B,ssf1 + 2CA,ssCB,ssf2),

�f2 + f ′2 = ˇ

Da
f ′′2 − k2

mn

p
f2 + Da(C2

B,ssf1 + 2CA,ssCB,ssf2),
(73)
ith the boundary conditions

At z = 0,
ˇ

Da
f ′1 = f1,

ˇ

Da
f ′2 = f2.

(74)
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At z = 1, f ′1 = 0,
f ′2 = 0.

(75)

In order to obtain the neutral stability relations, we substitute
= 0 in Eq. (73). Adding the equations for species A and B in Eqs.

73)–(75) and solving for (f1 + f2), we get

1 + f2 = 0. (76)

Substituting Eq. (76) in Eq. (73), and keeping �= 0, we get

df1
dz

= ˇ

Da

d2f1
dz2

− k2
mn

p
f1 − Da(C2

B,ssf1 − 2CA,ssCB,ssf1),

At z = 0,
ˇ

Da
f ′1 = f1,

At z = 1, f ′1 = 0.

(77)

Similar to the steady state solution of the three-dimensional
odel, we discretize the second-order ordinary differential equa-

ion by using second order central difference scheme with
eflection boundary conditions. We discretize the domain z = 0 to
= 1 using N − 1 points, which results in the following system of
omogeneous linear equations with (N + 1) equations and (N + 1)
ariables

f = B, (78)

here

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 0 0 · · · 0
a21 a22 a23 0 0 · · · 0
0 a32 a33 a34 0 · · · 0

0 0
. . .

. . .
. . . 0 0

0 · · · 0 aN−1,N−2 aN−1,N−1 aN−1,N 0
0 · · · 0 0 aN,N−1 aN,N aN,N+1
0 · · · 0 0 aN+1,N−1 aN+1,N aN+1,N+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(79)

f = [f1,1f1,2f1,3 . . . f1,N+1]T,

B = [0 0 0 . . . 0]T.
(80)

Patterned states will exist in the reactor only if the above system
f equations has a non-trivial solution, i.e., when

et(A) = 0. (81)

Using Eq. (81), we obtain a neutral stability relation of the form

1

(
k2
mn

p

)N−1

+ ˛2

(
k2
mn

p

)N−2

+˛3

(
k2
mn

p

)N−3

+ · · · + ˛N−1

(
k2
mn

p

)
+ ˛N = 0. (82)

The values of parameters˛1,˛2, . . .,˛N depend on Da, the steady
tate concentrations of both species, ˇ, kmn and N.

.2. Calculation of neutral stability boundary for the averaged
odel

Using Eqs. (47), (67), (68) we linearize the non-linear reaction

erms using multivariate Taylor series expansion truncated at first
rder to get

p

[
�f1 + 1

1 − (Da/6ˇ)
f1 + Da(c̄2

B,ssf1 + 2c̄A,ss c̄B,ssf2)

]
= −k2

mnf1

p

[
�f2 + 1

1 − (Da/6ˇ)
f2 − Da(c̄2

B,ssf1 + 2c̄A,ss c̄B,ssf2)

]
= −k2

mnf2.
(83)

[

[

[

[
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We substitute �= 0 for neutral stability analysis. Writing the
bove equations in matrix notation, we get

1
1 − (Da/6ˇ)

+Da c̄2
B,ss + k2

mn

p
2Da c̄A,ss c̄B,ss

−Da c̄2
B,ss

1
1 − (Da/6ˇ)

− 2Da c̄A,ss c̄B,ss + k2
mn

p

⎤
⎦[

f1
f2

]
= 0.

(84)

Similar to the three-dimensional case, for patterned states to
xist, the above system of homogeneous linear equations should
dmit a non-trivial solution, which occurs when

1
1 − (Da/6ˇ)

+ Da c̄2
B,ss + k2

mn

p
2Da c̄A,ss c̄B,ss

−Da c̄2
B,ss

1
1 − (Da/6ˇ)

− 2Da c̄A,ss c̄B,ss + k2
mn

p

∣∣∣∣∣∣ = 0.

(85)

Using Eq. (85), we obtain the neutral stability relation,

k2
mn

p

)2

+
[

2
(1 − (Da/6ˇ))

+ Da c̄B,ss(c̄B,ss − 2c̄A,ss)
](

k2
mn

p

)

×
[

1

(1 − (Da/6ˇ))2
+ Da c̄B,ss(c̄B,ss − 2c̄A,ss)

1
(1 − (Da/6ˇ))

]
= 0.

(86)

.3. Calculation of neutral stability boundary for the regularized
odel

Following the same procedure as in the case of averaged model,
e obtain a neutral stability relation (similar to Eq. (86)) for the

egularized model as

k2
mn

p

)2

+
[

2
(

1 + Da

6ˇ

)
+ Da c̄B,ss(c̄B,ss − 2c̄A,ss)

](
k2
mn

p

)
[(

1 + Da

6ˇ

)2
+ Da c̄B,ss(c̄B,ss − 2c̄A,ss)

(
1 + Da

6ˇ

)]
= 0. (87)

The neutral stability curves can be plotted in the parameter
pace of p versus Da by using the above neutral stability relations.
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